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Abstract. We study the effect on the density of states in mesoscopic ballistic billiards to which a supercon-
ducting lead is attached. The expression for the density of states is derived in the semiclassical S-matrix
formalism shedding light onto the origin of the differences between the semiclassical theory and the cor-
responding result derived from random matrix models. Applications to a square billiard geometry and
billiards with boundary roughness are discussed. The saturation of the quasiparticle excitation spectrum
is related to the classical dynamics of the billiard. The influence of weak magnetic fields on the proximity
effect in rough Andreev billiards is discussed and an analytical formula is derived. The semiclassical theory
provides an interpretation for the suppression of the proximity effect in the presence of magnetic fields
as a coherence effect of time reversed trajectories. It is shown to be in good agreement with quantum
mechanical calculations.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 74.50.+r Proximity effects, weak
links, tunneling phenomena, and Josephson effects – 74.80.Fp Point contacts; SN and SNS junctions

1 Introduction

A superconductor in proximity to a normal conductor af-
fects the spectral density of quasiparticle excitations in
the conductor. Recent technological advances in build-
ing very clean conductors of mesoscopic size have led to
consider this proximity effect not only in the dirty dis-
order limit, where it is known to play an important role
in many transport properties [1–4], but also in ballistic
mesoscopic samples [5–8] in proximity to a bulk super-
conductor. These systems are often modelled by ballistic
billiards. Billiard shaped structures connected to a super-
conductor have been coined Andreev billiards [9]. It was
shown in [5,6] that the form of the quasiparticle excita-
tion spectrum in the Andreev billiard depends crucially on
whether its classical dynamics is integrable or chaotic. A
semiclassical interpretation of these results based on the
Eilenberger Green’s function [11] was given in [7]. The
semiclassical approach has also been extended to meso-
scopic samples with a mixed classical phase space [8] and
with classical anomalous diffusion [10].

The aim of this contribution is twofold: We first present
a derivation of the semiclassical result for the quasiparti-
cle excitation spectrum based on the semiclassical scat-
tering matrix approach as pioneered by Smilansky and
co-workers [12,13] which allows for a transparent physi-
cal interpretation of the result of [7] in terms of multi-
ple Andreev scattering events [14]. Secondly, we discuss
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a number of features of the quasiparticle excitation spec-
trum in an integrable square billiard and in a square bil-
liard with surface roughness. These features include the
saturation of the quasiparticle excitation spectrum in the
square billiard and a semiclassical explanation of the effect
a weak magnetic field has on the quasiparticle excitation
spectrum in billiards with surface roughness.

The semiclassical expression for the quasiparticle den-
sity of states will be derived in Section 2. The strength of
this approach lies in the fact that it allows to see on which
level approximations enter semiclassically. The semiclassi-
cal theory of chaotic Andreev billiards predicts an expo-
nential suppression of the density of states near the Fermi
energy [7,8]. In contrast a random matrix modelling [5,6]
leads to the result of a gap in the density of states in
an energy interval above the Fermi energy. The scatter-
ing matrix approach elucidates one possible origin of the
differing results.

In Section 3.1 we discuss the quasiparticle excitation
spectrum of a square Andreev billiard in detail. While pre-
vious papers concentrated on the linear rise of the spec-
trum above the Fermi energy [5–7] we focus on the satu-
ration of the excitation spectrum at higher energies. We
show that the saturation can be related to the probability
distribution of short classical paths hitting the supercon-
ducting parts of the billiard boundaries. In Section 3.2
we discuss results for square billiards with additional sur-
face roughness. Surface roughness is modelled as isotropic
scattering of electrons and holes from the normal parts
of the billiard boundary. An exponential suppression of
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Fig. 1. Square billiard with rough boundaries. Roughness is
modelled by isotropic scattering when an electron or hole hits
the normal billiard boundary (reflection in any direction with
equal probability) in contrast to specular reflection at a smooth
boundary. At the SN boundary electrons are retro-reflected
(Andreev reflected) as holes and vice versa.

the density of states near the Fermi energy is observed in
complete analogy to chaotic billiards [8]. Finally in Sec-
tion 3.3 the effect of an additional weak magnetic field on
the quasiparticle excitation spectrum in the rough billiard
is considered. We predict an enhanced density of states
compared to the field free case for energies near EF and
give analytical semiclassical expressions. The semiclassical
theory provides a clear interpretation of this result as an
effect of destructive interference between reversed paths in
the presence of a magnetic field. Again the semiclassical
predictions are in good agreement with quantum mechan-
ical calculations.

2 Theory

In a quasi-classical picture the effect of a superconducting
lead coupled to a mesoscopic billiard manifests itself in
the process known as Andreev reflection [14]: At the su-
perconducting parts of the billiard boundary electron-like
quasi-particles are retro-reflected with opposite velocities
as holes and vice versa (see Fig. 1, and Refs. [4,15] for a
detailed description). In contrast electrons and holes are
specularly reflected at those parts of the billiard bound-
ary which are not in contact to the superconductor if the
billiard boundary is smooth. For a billiard with surface
roughness we will take the possibility of isotropic scatter-
ing off the normal walls of the billiard into account. This
is also indicated in Figure 1.

The local quasiparticle density of states (DOS) d(E, r)
of an Andreev billiard is defined as the density of states
at positive energy E above the Fermi energy EF = 0,
weighted with the corresponding electron-like component
of the wave function at point r. It is given by [7]

d(E, r) =
dN
A

∫ π

0

dφ
∑
n

δ

(
EL(φ)
~vF

− (n+
1
2

)π
)
. (1)

A denotes the area of the billiard and vF denotes the Fermi
velocity. It is assumed that E is much smaller than the
pair potential ∆(r) in the superconducting lead and that
the lead supports a large number N � 1 of classically

allowed transverse channels. In the billiard the pair po-
tential ∆(r), which couples electron and hole like states,
vanishes identically. Due to the condition E � ∆ elec-
trons in the billiard which hit the superconducting lead
get reflected as holes thus quantum mechanically form-
ing electron-hole quasiparticle states. L(φ) is the length
of the trajectory which passes the point r in the billiard
under an angle φ between two successive bounces with
the superconducting boundary and dN = mA/(2π~2) is
the average density of states in the isolated billiard. We
further assume a perfectly transmitting boundary between
the billiard and the lead if the lead is in the normal state
(no potential difference), which has the effect that the
probability for Andreev reflection equals one if the lead is
in the superconducting state. (A situation including the
probability for Andreev reflection as well as normal reflec-
tion between SN boundaries was taken into account in a
somewhat different context and geometry e.g. in [16,17].)

The total quasiparticle DOS in the billiard is obtained
by integrating (1) over the area of the billiard system.
The integral over the billiard area can be converted into
an integral over initial starting angles α and positions y
of trajectories along the lead of width w. The resulting
expression is

d(E) =
dN
A

w∫
0

dy

1∫
−1

d(sinα)

×
L(y,α)∫

0

ds
∞∑
n=0

δ

(
EL(y, α)
~vF

− (n+
1
2

)π
)
, (2)

where s is the local variable measuring the length along a
trajectory. If one additionally assumes an ergodic distri-
bution of trajectories in the initial conditions y and sinα
on the boundary the expression for the density of states
can be rewritten in terms of the probability distribution
P (L) of trajectories of length L between two successive
bounces with the SN boundary. It is then [7,8]

d(E) =
2dNw
A

∫ ∞
0

dLP (L)L
∑
n

δ

(
EL

~vF
− (n+

1
2

)π
)
.

(3)

The assumption of an ergodic distribution is justified in
the case of rough billiards when the time terg on which the
classical motion in the billiard becomes ergodic is much
smaller than the mean escape time τesc of a particle from
the billiard into the SN-lead. It is also a good approxima-
tion for the integrable square billiard with a large number
of open channels N � 1 because then the distribution of
initial conditions in sin θ is quasi-continuous. For a small
number of channels it is more appropriate to resort to
the continued fraction evaluation of (2) described in Sec-
tion 3.1, which takes the quantization of angles explicitly
into account.

We now aim to derive (3) from the semiclassical scat-
tering matrix approach for quantisation [13] and to un-
derstand the approximations which lead to (3) on the
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semiclassical level. The scattering matrix approach for
quantisation of a billiard system which is opened via a lead
starts with a trace formula for the density of states d(E)
which involves two contributions: The first term dR(E) is
the resonance density of states in the corresponding bil-
liard opened via the lead. The second contribution takes
the coupling to the superconductor into account and is
expressed as a sum over traces of powers of the scatter-
ing matrix which relates incoming and outgoing transverse
modes in the lead. The result is:

d(E) = dR(E)− 1
π

lim
η→0

Im
∂

∂E
ln det [1− SASN(E + iη)]

(4)

where the total scattering matrix for the Andreev billiard
is composed of a product of a 2N times 2N normal scat-
tering matrix SN(E) and an Andreev scattering matrix
SA of equal dimension. The two scattering matrices are
given as [18]

SN(E) =

(
S(E) 0

0 S∗(−E)

)

and SA =

(
0 −i
−i 0

)
. (5)

The normal scattering matrix SN has block diagonal struc-
ture where the twoN times N blocks describe electron and
hole scattering between the channel modes. The Andreev
scattering matrix SA couples electrons and holes at the
SN-interface. The sub-diagonal elements are N times N
unit matrices with an additional phase of (−i). We neglect
the weak energy dependence of the Andreev scattering
matrix which is valid in the deep sub-gap regime E � ∆
[15,21]. In terms of the electron and hole scattering matrix
the density of states takes the form

d(E) = dR(E)− 1
π

Im
∞∑
m=1

(−1)m

m
Tr

∂

∂E
[S(E)S∗(−E)]m ,

(6)

where (4) has additionally been expanded into a sum over
traces of powers of the scattering matrix. An averaged
density can be obtained by different procedures: One can
average d(E) over a classically small interval of Fermi ener-
gies EF or one can average d(E) over different realizations
of the rough billiard (with fixed area A). In any case av-
eraging of the resonance density gives the average density
dN of the isolated billiard, and the average quasiparticle
density is

dav(E) = dN (E)

− 1
π

Im
∞∑
m=1

(−1)m

m
Tr

∂

∂E
〈[S(E)S∗(−E)]m〉 . (7)

Averaging is denoted by brackets 〈· · · 〉. Equation (7) is the
starting point for the derivation of expression (3) within
the semiclassical scattering matrix approach.

Semiclassically the elements Snn′(E) of the electron
scattering matrix are expressed as a sum over classical
orbits. Each orbit contributes with an amplitude Aj and
a phase Sj . The resulting expression is [12,20]

Snn′(E) =
∑
j

Aj(n→ n′) exp
[

i
~
Sj(E,n→ n′)− i

π

2
νj

]
,

(8)

where νj is an additional integer Maslov index. The am-
plitude pre-factor is given explicitly by

Aj(n→ n′) =
(
~

2π

)1/2 ∣∣∣∣∂I ′(E)
∂θ

∣∣∣∣−1/2

(9)

where I ′ = ~n′ is the action of the final transverse mo-
tion in the lead. Only those paths contribute which enter
the billiard at the SN-boundary with fixed quantised an-
gle ± sin θ = nπ/(kFw) and return to the boundary with
angle ± sin θ′ = n′π/(kFw). In terms of the initial position
y along the SN boundary and the angle θ′ with which the
trajectory returns the amplitude can be written as

Aj(n→ n′) =
1
w

√
π

2kF

∣∣∣∣ ∂y

∂(sin θ′)

∣∣∣∣1/2 . (10)

To proceed further we resort to the physical picture of
Andreev reflection of electrons into holes and vice versa at
the SN-boundary. We first observe that the traces contain
products of alternating electron scattering matrices S(E)
and hole scattering matrices S∗(−E). The energy E above
the Fermi level is large with respect to the mean level
density δ ≡ d−1

N of the isolated billiard, but is classically
small. Similar to the semiclassical evaluation of density-
density correlator [31–33] we expand the phase around the
Fermi energy as Sj(±E) ' Sj(0)±ETj(0) where Tj is the
return time of the orbit to the SN-interface. Additionally
the amplitudes are only slowly varying functions of the
energy and are evaluated at the Fermi energy.

We demonstrate how to evaluate the sum over traces
of products of the scattering matrices for the n = 1 term.
Generalisation to higher order terms is straightforward.
Matrix elements of products of an electron and a hole
scattering matrix have the form

[S(E)S∗(−E)]nn′ =
∑
n′′

∑
j,k

Aj(n→ n′′)A∗k(n′′ → n′)

× exp
[

i
~

(Sj − Sk)
]

exp
[

i
~
E(Tj + Tk)

]
. (11)

Upon averaging [S(E)S∗(−E)]nn′ over the Fermi energy
or different realizations of boundary roughness in the case
of rough billiards only diagonal terms j = k are assumed
to contribute to the sum. The diagonal approximation is
further justified by the physical picture of Andreev reflec-
tion, which means that the reflected hole orbit retraces
the electron orbit and vice versa. However it must be em-
phasised that Andreev reflection is exactly fulfilled only
at the Fermi energy EF = 0, and in an exact treatment
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deviations from Andreev reflection at finite energies must
be taken into account.

The diagonal approximation implies that the initial
and final channel indices are equal, n = n′, and the prod-
uct matrix (11) is diagonal:

[S(E)S∗(−E)]nn′ =

δnn′
∑
n′′

∑
j

|Aj(n→ n′′)|2 exp
(

2
i
~
ETj

)
. (12)

In the semiclassical limit the summation over intermediate
channels n′′ can be transformed into an integral over an-
gles:

∑
n′′ kFw/π

∫ 1

−1 d(sin θ′). Using the expression (10)
for the amplitudes one arrives at the final expression

[S(E)S∗(−E)]nn′ = δnn′
1

2w

∫ w

0

dy exp(2
i
~
ET (y)). (13)

Taking the trace amounts to another integration over the
angle in the semiclassical approximation and one has

Tr[S(E)S∗(−E)] =

kF

2π

∫ 1

−1

d(sin θ)
∫ w

0

dy exp(2
i
~
ET (y)). (14)

Within the diagonal approximation traces of higher pow-
ers of products of electron and hole scattering matrices
are easily shown to be

Tr[S(E)S∗(−E)]m =

kF
2π

∫ 1

−1

d(sin θ)
∫ w

0

dy exp(2
i
~
mET (y)). (15)

Using the trace formula (7) this gives

dav(E) = dN +
kF

2π2~

∞∑
m=1

(−1)m

×
∫ w

0

dy
∫ 1

−1

d(sin θ)T cos(
2mT
~

E). (16)

If now Poisson summation is used the equivalence of (16)
and the Bohr-Sommerfeld like expression (2) for the av-
erage density of states in the Andreev billiard, which was
derived on the basis of the Eilenberger equation for the
Green’s function [5], can easily be seen.

The scattering matrix approach gives a clear and in-
tuitive interpretation of how the coupling of the billiard
to superconducting leads modifies the average density of
states: It is given as a sum of the average density of states
of the isolated billiard (the Weyl term) plus a sum of
multiple Andreev reflections of electron into hole states.
The neglection of off-diagonal contributions in the semi-
classical approach is a possible explanation for the dif-
ference between the random matrix result for a chaotic
Andreev billiard [5,6], which predicts a gap in the quasi-
particle excitation spectrum for billiards with a chaotic
classical phase space, and the semiclassical theory which

leads to an exponential suppression [7,8]. Pairs of non-
identical trajectories k 6= j which follow the same path
along a segment in real space before they depart due to
slightly different initial conditions have similar actions and
therefore also survive the averaging of products of elec-
tron and hole scattering matrices, equation (11) and pow-
ers of it [22]. For systems with ballistic disorder an ex-
tended diagonal approximation which takes into account
the contribution of paths which are not exactly related
by time-reversal symmetry has recently been proposed in
the context of weak localisation [23,24] and Andreev bil-
liards [25]. Corresponding off-diagonal pairs of paths also
exist in clean (disorder free) chaotic systems. In semiclas-
sical approaches beyond the diagonal approximation these
off-diagonal contributions yield random matrix contribu-
tions to the spectral form factor [27] and explain weak
localization in clean chaotic cavities [28]. The influence of
such off-diagonal contributions arising in the semiclassical
approach to the density of states in Andreev billiards is
presently under investigation.

Finally it should be emphasised that averaging has
been performed on classically small scales. Fluctuations
of dav(E) can still appear on classical energy scales due to
fluctuations in the length distribution probability P (L).
In the following we will skip the index. d(E) then also
denotes the density of states after the above described av-
eraging.

3 Results

In the following we present results of quantum mechan-
ical calculations for the average density of states in
Andreev billiards and compare them with the semiclassical
theory. We will focus on the difference between results for
a square billiard which is integrable and a square billiard
with rough boundaries. As an effect of rough boundaries
electron and hole trajectories can be scattered into arbi-
trary directions when they hit the normal boundary. We
will then consider the effect of a weak magnetic field on
the density of states and derive a semi-analytical expres-
sion for the magnetic flux and energy dependence of the
density of states.

To numerically model the structure of Figure 1 we con-
sider a ballistic normal region connected to a clean super-
conductor. For our numerical calculation we use a tight-
binding version of the Bogoliubov-de Gennes Hamiltonian:(

H0 ∆

∆∗ −H0

)(
u

v

)
= E

(
u

v

)
. (17)

In this equationH0 =
∑
i |i〉εi〈i|−t

∑
〈ij〉 |i〉〈j| is the stan-

dard single–particle Anderson model with 〈ij〉 denoting
pairs of nearest neighbour sites and ∆ =

∑
i |i〉∆i〈i| is the

superconducting order parameter. The billiard has width
M and length L (in units of the lattice constant a). The
coupling to the superconductor is of width w. With the
exception of the billiard boundary, the diagonal matrix el-
ements εi = ε0, with ε0 chosen to ensure that the Fermi
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level is away from the van Hove singularity in the band
centre (ε0 = 0). To model the boundary roughness, for
sites on the boundary we randomly choose εi = 104 or
εi = ε0 with equal probability. In the absence of a mag-
netic field, the off-diagonal matrix elements t, which deter-
mine the width of the energy band (the band-width is 8t),
are set to 1 throughout the system. The effects of a mag-
netic field are modelled by including a Peierls’ phase fac-
tor into these off-diagonal elements in the billiard region.
To compute the density of states, a numerical decimation
technique is employed [29]. This has been used extensively
over recent years to discuss transport and density of states
properties of hybrid systems [30].

3.1 Square billiards

The asymptotic length distribution of trajectories in
square billiards typically follows a power law of the form
P (L) ∼ L−3. This result was used in [5] to show that the
density of quasiparticle states is a linear function of the
energy of quasiparticle excitations for E � ∆. The slope
of the linear behaviour is related to the proportionality
constant of the asymptotic length distribution. The above
distribution however leads to a linear growth of the den-
sity of states at all energies and cannot reproduce the
large energy limit d(E)→ dN for the quasiparticle density.
We show that the crossover to dN is related to a modi-
fied length distribution P (L) for small lengths. For widths
w of the superconducting channel much smaller than the
length a of the billiard the length distribution reaches ap-
proximately a plateau for small lengths. We introduce two
different length distribution functions and compare nu-
merical results to the analytical results derived from the
smooth length distribution functions.

It is useful to express the density of states in terms
of scaled lengths and energies. Introducing the lengths
LT = πA/w and ET = ~vF/(2LT) which are sometimes
referred to as the Thouless length and the Thouless en-
ergy [5–7], lengths l = L/LT and energies ε = E/ET are
expressed in terms of these units. The meaning of LT and
ET will become clear for chaotic billiards (Sect. 3.2), where
LT is the average length of trajectories before they escape
from the billiard. We use the same units of length and en-
ergy for the integrable square billiard in order to compare
results with the rough billiard later. Expressed in scaled
quantities the density of states has the form

d(ε)
dN

= π

∫ ∞
0

dlP (l)l
∞∑
n=0

δ

(
εl

2
− (n+

1
2

)π
)

(18)

or equivalently

d(ε)
dN

=
(2π)2

ε2

∞∑
n=0

(n+
1
2

)P (ln) . (19)

We introduce two different length distribution functions.
The first length distribution function Pc(L) approximates

the probability by a constant for lengths l < lc:

Pc(l) =

{
Cc/l

3
c l < lc

Cc/l
3 l ≥ lc

. (20)

The second distribution function has a smooth crossover
to a constant probability at small l:

Ps(l) =
Cs

l3 + l3s
· (21)

We first discuss the length distribution function Pc(l).
For a given energy ε there is a value n0 in the sum (19)
given by n0 = εlc/(2π) − 1/2 so that for n > n0 the
algebraic tail of the length distribution for Pc(ln) applies
while for n < n0 Pc(ln) is constant. The density of states
is

d(ε)
dN

= Cc
(2π)2

ε2

[
1
l3c

n0−1∑
n=0

(n+
1
2

) +
ε3

(2π)3

∞∑
n=n0

1
(n+ 1

2 )2

]
(22)

which after summation and using the relation between n0

and ε becomes

d(ε)
dN

= Cc

[
2π2

l3cε
2

(
εlc
2π
− 1

2

)2

+
ε

2π
ψ′
(
εlc
2π

)]
for ε > π. (23)

ψ′ is the derivative of the Digamma function. This expres-
sion for the spectral density is valid for ε > π, otherwise
n0 = 0 and the first part in the sum does not contribute.
For ε < π the result is

d(ε)
dN

= Cc
π

4
ε, (24)

which shows the known linear behaviour for small energies
in square billiards [5]. Using ψ′(x) → 1/x as x → ∞ the
asymptotic behaviour for large energies is given by

d(ε)
dN
→ 3Cc

2lc
as ε→∞. (25)

The values of the free parameters are determined by the
requirements that (a) the probability distribution must
be normalised:

∫∞
0
P (l)dl = 1 and (b) for large excita-

tion energies the influence of the coupling to the super-
conductor vanishes and thus d(ε) → dN as ε → ∞. This
gives the values lc = 1 and Cc = 2/3. It is seen that
these requirements automatically determine the propor-
tionality constant Cc of the asymptotic power law tail of
the length distribution (20) and thus the slope Ccπ/4 of
the linear behaviour (24) of the low energy spectral den-
sity. The value π/6 is somewhat smaller than the value
2/π given by the authors of [5] who based their calcula-
tions on a numerically observed value of C = 8/π2 but
did not take a crossover of P (l) to a flat distribution at
some value lc into account. Note that one could adjust C
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independently to a given value if one introduced a three
parameter function for the length distribution P (l), i.e.
by giving a cut-off length l∗ below which P (l∗) = 0. Such
a cut-off length parameter would quite naturally be of or-
der l∗ ≈ 2a. We will however not deal with this alternative
here as when using a three parameter length distribution
probability formulas become rather involved.

The length distribution (20) is easy to handle and gives
results which agree well with quantum mechanical calcu-
lations. It leads however to an unphysical discontinuity of
the derivative of d(ε) at ε = π. The second length dis-
tribution (21) we used is free of this feature. Proceeding
in the same way as outlined above the spectral density of
quasiparticle states is given by

d(ε)
dN

=
Cs

2π
ε
∞∑
n=0

n+ 1
2(

εls
2π

)3
+
(
n+ 1

2

)3 · (26)

The requirement of normalisation of Ps(l) leads to Cs =
3
√

3l20/(2π). Further evaluation is only possible in the
small and large energy limits. The small energy limit
(εls � 2π) gives again the result (24) with Cc replaced
by Cs. In the opposite high energy limit the summation
can be replaced by integration over the continuous vari-
able x = 2π/(εls)(n+ 1/2), leading to

d(ε)
dN

=
Cs

ls

∫ ∞
x0

x

1 + x3
dx , x0 =

π

εls
, (27)

and finally

d(ε)
dN

=
Cs

π
ε 2F1

(
1
3
, 1,

4
3
,− 1

x3
0

)
→ 2πCs

3
√

3l0
as ε→∞.

(28)

The values of the parameters of the length distribution
function are given by ls = 1 and Cs = 3

√
3/(2π). This

value of C is very close to C = 8/π2 of [5] giving a slope
of 3
√

3/8 ≈ 0.6495 of d(ε)/dN for small energies compared
to 2/π ≈ 0.6366 of [5].

In Figure 2 we present a characteristic example of
length distribution probabilities for a small channel width
w � a. A plateau in the length distribution function P (l)
for l < 1 is clearly visible. Here the crossover from the
asymptotic power law for long lengths to the plateau is
slightly better modelled by Pc(l) compared to Ps(l).

We also calculated the density of states for individ-
ual square billiards starting from the semiclassical formula
(2) without employing the assumption of an ergodic dis-
tribution of initial conditions on the SN-boundary. For
individual square billiards this formula is more appropri-
ate than (3) before averaging over Fermi energy since it
does not involve the assumption of an ergodic distribution
of initial conditions of trajectories on the SN-boundary.
In square billiards trajectories with equal length between
two hits with the channel lead are organised in fami-
lies (for a discussion see [34]). Orbits with channel in-
dex a = 1, · · · , N hit the SN-boundary under an angle
sin θa = aπ/(kFw). For each channel a there is a finite
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3
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Fig. 2. Histogram of the length distribution probability
P (L/LT) for a square billiard obtained by evaluating equa-
tion (29) by the method of continued fractions. Parameters:
Length of the billiard sides a = 1, width of the superconduct-
ing lead w = 0.1. The histogram is an average over different
numbers of channels ranging from N = 96 to N = 105. Dashed
line: asymptotic power law for large l. Dotted line: Pc(l), equa-
tion (20). Dot-dashed line: Ps(l), equation (21).

number of orbit families λa with different lengths Lλa .
Each member of an orbit family carries a weight δλa with
which it contributes to the density of states which is then
given by

d(E) =
dN
A
N−1

N∑
a=1

∑
{λa}

δλaLλa

×
∞∑
n=0

δ

(
ELλa
~vF

− (n+
1
2

)π
)

(29)

with
∑
{λa} δλa = w for the sum of weights of the mem-

bers λa of a single channel a. The lengths Lλa of con-
tributing trajectory families and their weights δλa can be
very efficiently calculated by means of an algorithm involv-
ing a finite number of continued fractions as described in
[34]. Figure 3 shows the result of a quantum mechanical
calculation for a billiard with w/a = 1/3 and N = 12
channels. The solid line is a 20-point average over the
quantum mechanical data. The dashed line represents the
semiclassical result obtained from equation (29). It fol-
lows the general trend of the quantum mechanical result
but is somewhat lower. Also plotted as dotted and dot-
dashed lines are the formulas for the averaged quasiparti-
cle excitation spectrum obtained from equations (23, 24)
and (26). The linear behaviour of the quasiparticle spec-
trum for small excitation energies based on the asymptotic
length distribution function P (l) without plateau is plot-
ted as the long dashed line. The average of the quantum
mechanical result is in good agreement with the results
of equations (23, 24) and (26). Both the numerical semi-
classical result (dashed line) and the quantum mechani-
cal result show however additionally a pronounced oscil-
lation around the mean value d(ε) = dN at energies ε > 1.
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Fig. 3. Average density of states d(ε)/dN as a function of the
energy ε = E/ET. The circles are quantum mechanical calcu-
lations for a square billiard of side length a = 75 and channel
width w = 25 (N = 12). The solid line is a 20-point average
over the set of data points. Dashed line: Semiclassical result
from equation (29). Dotted line: DOS using Pc(l) from equa-
tion (20). Dot-dashed line: DOS using Ps(l) from equation (21)
Long dashed line: Low energy limit d(ε)/dN = (2/π)ε based on
the probability distribution P (l) = C/l3.

We observed this trend also for other individual square
billiards with different parameter values of w/a and N .
The origin of these oscillations has not yet been identified
and deserves further investigations.

4 Rough billiards

In this subsection we apply the semiclassical result (3) for
the quasiparticle density of states to the square billiard
with additional surface roughness. In the following we dis-
cuss the situation where the width w of the superconduct-
ing channel is much smaller than the length a of one bil-
liard side. Since a trajectory randomises once it hits the
rough billiard walls due to off-scattering in arbitrary direc-
tion with equal probability the motion becomes ergodic on
a time scale much smaller than the mean time between two
hits with the superconducting part of the boundary. The
latter can also be viewed as the escape time of trajectories
from the billiard if it was open along the channel lead. The
escape probability P (L) of trajectories of length L from an
open chaotic billiard is known to be given asymptotically
by [12,35]

P (L) =
1
LT

exp
(
− L

LT

)
(30)

with the above defined Thouless length LT [5]. It is re-
lated to the mean escape time by τesc = LT/vF. Note that
averaging over different realizations of the rough billiard
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Fig. 4. Average density of states for a rough square billiard.
Data points are quantum mechanical energy eigenvalues for a
billiard of side length a = 75 and channel widths 15 ≤ w ≤ 40
(7 ≤ N ≤ 20). The solid line is a 20-point average of the
numerical data. Dashed curve: semiclassical calculation based
on equation (2). Dotted curve: Analytical expression equa-
tion (31). Dot-dashed line: Random matrix result of [3].

is effectively taken into account by the introduction of
the smooth length distribution function P (L) by which a
probabilistic description on the classical level is achieved.
Numerical calculations confirm the form (30) of P (L) for
long trajectories. Using (30) the average density of states
can be calculated from equation (3) by evaluating the
delta function integral directly and summing over n. The
result is

d(ε) = dN
(π
ε

)2 cosh
(
π
ε

)
sinh2

(
π
ε

) with ε =
E

ET
, ET =

~vF

2LT
·

(31)

This result was also derived in [8] in the context of a
chaotic billiard coupled to a superconducting lead of small
width w. It remains valid for billiards with boundary
roughness as long as the time scale terg on which the classi-
cal motion in the billiard becomes ergodic is much smaller
than the mean escape time τesc.

The semiclassical prediction (31) is compared with
numerical quantum mechanical results in Figure 4. A
20-point average was taken over the numerical results for
different channel widths w (solid curve). It is in very
good agreement with the analytical formula (31) (dot-
ted curve) as well as an evaluation of equation (3) with
numerically calculated length distribution functions P (L)
(dashed curve). The Thouless energy is inversely propor-
tional to twice the escape time τesc of an electron trajec-
tory since for a complete transversal of a path hitting the
SN-boundary the electron part and the retracing as a hole
trajectory have to be added for one full cycle.

The exponential suppression of the spectral density for
the rough billiard in contrast to the linear rise in energy for
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Fig. 5. Density of states for the rough square billiard for differ-
ent numbers N of open channels. The number of open channels
varies as N = w/2 with a = 50. Dashed curve: Analytical ex-
pression equation (31).

the square billiard without roughness has its origin in the
asymptotic behaviour of the length distribution function
P (L). The density of low-lying quasiparticle excitations is
determined by very long orbits in order to fulfill the delta
function condition in equation (3) in the limit E → 0. As a
consequence of the exponential tail of the length distribu-
tion (30) the density of states is exponentially suppressed
above the Fermi energy. In contrast the algebraic tail of
P (L) in the square billiard without roughness leads only
to a linear suppression in energy.

In a different approach the Hamiltonian of an (iso-
lated) chaotic mesoscopic billiard was modelled by a GOE
ensemble from random matrix theory and its coupling to
the superconducting leads was then taken into account
by means of a coupling matrix [5,6]. There it was shown
that the quasiparticle density of states vanishes exactly be-
low an energy of approximately Ec < 0.6ET (see dashed-
dotted line in Fig. 4). As discussed at the end of Section 2
the difference between the two results may be traced back
to the diagonal approximation employed in the semiclas-
sical theory. The quantum mechanical results of Figure 4
are in good agreement with the semiclassical prediction of
an exponential suppression of the density of states. This is
due to the fact that the random matrix theory of [5] pre-
dicts a gap in the excitation spectrum in the limit of an
infinity number of channels N →∞ (since it is essentially
an expansion in the parameter 1/N).

For a finite number of channels the behaviour of the
spectral density around Ec is expected to be smoothed out
[22,26]. Our quantum mechanical results indicate that the
N dependence is weak for the range of N (10 ≤ N ≤ 25)
used in our calculations (see Fig. 5), but they do not allow
for a clear-cut determination of the exponent.

4.1 Effect of a magnetic field in rough billiards

In this subsection we consider the effect of a magnetic
field on the density of quasiparticle states. The magnetic
field B is uniform and points in the direction perpendic-
ular to the billiard area. The superconducting lead itself
is not penetrated by the flux. We study the perturbative
regime of small magnetic fields where the cyclotron ra-
dius is much larger than the length scale a defined by the
size of the mesoscopic billiard itself. The trajectories are
then unchanged and the only effect of the magnetic field
is an additional phase acquired by each trajectory which
is proportional to the directed flux enclosed by the tra-
jectory [36]. Formula (2) for the average density of states
is then modified to include the flux dependent phase for
each trajectory. The result is

d(E) =
dN
A

W∫
0

dy

1∫
−1

d(sinα)

×
L(y,α)∫

0

ds
∑
n

δ

(
EL(y, α)
~vF

− (n+
1
2

)π + 2π
Φ(y, α)
Φ0

)
,

(32)

where Φ0 = ch/e is the flux quantum. Electron trajectories
which traverse the billiard in opposite directions between
two hits with the superconducting part of the boundaries
acquire flux of same magnitude but opposite sign [37]. For
the generic case of rough or chaotic billiards a statistical
description can be used in the same way as was done in
the previous section for the magnetic field free case. In
addition to the length distribution P (L), which remains
unchanged, the distribution PL(Θ) of the directed area
Θ enclosed by the trajectories of given length L must be
specified. For long trajectories it is given by a Gaussian of
the form [35,36]

PL(Θ) =
1√

2πLσL
exp

(
− Θ2

2LσL

)
, (33)

where Θ is the directed area enclosed by the orbit. A
heuristic argument for this distribution goes as follows: for
a long orbit the length is on average proportional to the
number of bounces with the rough billiard walls. At each
bounce the trajectory is randomised and therefore the area
swept between two successive bounces can be viewed as
a random variable with zero mean value. Trajectory seg-
ments are independent of each other. The total area Θ
accumulated by a trajectory is therefore a sum of indepen-
dent random variables and its distribution is a Gaussian.
It follows that the area distribution integrated over length
has an exponential form: P (Θ) = (2Θ̄)−1 exp(−Θ/Θ̄)
with Θ̄ =

√
LTσL/2.

Using the above area distribution and an ergodic dis-
tribution of initial conditions along the superconducting
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Fig. 6. Average density of states d(ε)/dN for the rough square
billiard of unit area in the presence of a flux according to the
semiclassical formula (35). Solid line: φ = 0.5. Dashed line:
φ = 1.0.

channel boundary the density of states can be rewritten as

d(E,B) =
dNW

A

∫ ∞
0

dLP (L)L
∫ ∞
−∞

dΘPL(Θ)

×
∑
n

δ

(
EL

~vF
− (n+

1
2

)π +
2πBΘ
Φ0

)
. (34)

Transforming the sum over delta functions by use of the
Poisson formula and performing the integration over areas
and lengths successively one finally gets the following ex-
pression for the average spectral density of quasiparticle
excitations as a function of energy and magnetic flux:

d(ε, φ) = dN + 2dN
∞∑
k=1

(−1)k
(1 + k2φ2)2 − (kε)2

[(1 + k2φ2)2 + (kε)2]2
,

φ =
4πB
Φ0

√
2σLLT . (35)

The dimensionless quantity φ is the effective flux through
the billiard measured in units of the flux quantum Φ0 =
ch/e. This is evident when it is written as φ = 4πBΘ̄/Φ0.
Θ̄ has the meaning of an effective area. The dimension-
less flux can also be expressed as φ = Φtot/Φcr, where
Φtot = BA is the total flux through the billiard and
Φcr = A/(4πΘ̄)Φ0. As will be discussed in the following
in the regime Φtot < Φcr (φ < 1) the exponential suppres-
sion of the DOS near the Fermi energy persists while for
larger fluxes the DOS converges towards a constant value.
Figure 6 shows the quasiparticle excitation spectrum as a
function of energy for two different values of the flux pa-
rameter φ. With growing flux the average density of states
acquires the value dN of the isolated billiard also for values
E < ET.

At the Fermi energy ε = 0 equation (35) can be
summed and gives

d(ε = 0, φ) =
dN
2
π

φ

[
sinh

π

φ

]−1 [
π

φ
coth

π

φ
+ 1
]
. (36)

Equation (36) should not be understood in the sense of an
expression for the density of states exactly at the Fermi
level. Properly interpreted it is proportional to the quasi-
particle density of states as a function of the magnetic
flux when the density of states is averaged over an en-
ergy window larger than the mean level spacing δ above
the Fermi energy. (Note that the averaging is over an en-
ergy scale much smaller than ET). It has been shown
that even at fluxes φ � 1 a minigap of order of the
mean level spacing is present in the quasiparticle density
of states at the Fermi level [18,19]. Therefore the quasi-
particle DOS exactly at the Fermi level is always zero.
According to reference [18] for a billiard whose isolated
dynamics is described by a GUE matrix ensemble (which
corresponds to φ > 1) the DOS is given by dGUE(E)/dN =
1−sin(2πdNE)/(2πdNE). When dGUE(E)/dN is averaged
over the interval 0 < E < δ it gives the value g = 0.77.
Using this asymptotic value for large fluxes we can approx-
imate the DOS dδ averaged over the window 0 ≤ E ≤ δ
semiclassically as

dδ(0, φ) ' gd(0, φ) . (37)

The factor g has the effect that dδ(0, φ) saturates at a
value smaller than 1 in large magnetic fields, which is the
consequence of the existence of the minigap.

Figure 7 compares the semiclassical prediction of equa-
tion (36) and equation (37) (dashed line) with a numerical
quantum mechanical calculation (solid line). It shows that
dδ(0, φ) is exponentially suppressed on the scale φ < 1.
The quantum mechanical results were obtained for a rough
billiard (sides a = 1 and b = 1.5) with 10 different values of
the width between w = 0.2 and w = 0.38. In reference [35]
numerical evidence was put forward that the effective area
scales like Θ̄ = α0A

5/4w−1/2 with the parameters of the
billiard (α0 is a numerical parameter). The flux scale Φcr

entering into the magnetic field dependence of the DOS
then scales as Φcr = (4πα0)−1w1/2A−1/4Φ0. The quantum
mechanical calculations for different channel widths w and
fixed billiard area A confirm this scaling property. Deter-
mining α0 = 0.1 from the numerical data the flux scale
Φcr is fixed for each value of w. The quantum mechanical
data points plotted as a function of the flux Φtot/Φcr and
its average (solid line) are in excellent agreement with the
semiclassical theory of equation (37).

The difference between equation (36) which would lead
to a finite density of states at ε = 0 at nonzero flux and the
exact result of reference [18] which predicts the minigap
shows that the semiclassical approximation is not appli-
cable for energies E < δ. As it is known the diagonal
approximation, which we employed, breaks down on the
scale of the mean level spacing [31,38] and therefore semi-
classics within the diagonal approximation does not lead
to the correct result on the scale of the mean level spac-
ing itself. When the density of states is averaged over a
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Fig. 7. Spectral density dδ(0, φ)/dN of quasiparticle excita-
tions as a function of the flux φ = Φtot/Φcr for the rough square
billiard. The density of states is averaged over the small energy
interval 0 ≤ E ≤ δ, where δ is the mean level spacing of the
isolated billiard. Data points: quantum mechanical calculation
width 10 different channel width w. Solid line: Average over
quantum mechanical data points. Dashed line: semiclassical
theory, equations (36) and (37).

scale of the mean level spacing δ or larger equation (37)
describes the behaviour of the spectral density correctly
as discussed above.

Finally we would like to emphasize that the semiclassi-
cal theory allows to interpret the destruction of the prox-
imity effect in the presence of a magnetic field as a quan-
tum mechanical interference phenomenon. Classically the
return probability of trajectories to the SN-interface is
given by P (L). Without magnetic field a path and its re-
verse interfere constructively. In the presence of a mag-
netic flux a phase difference between a path and its re-
verse arises. The quantum mechanical return probability
is reduced compared to its classical value P (L) [33]. As a
result the DOS of the quasi-particle excitation spectrum
is modified compared to the zero field value according to
equations (34) and (35).

5 Summary

We studied the quasiparticle excitation spectrum of a
mesoscopic conductor modelled by a billiard in proxim-
ity to a superconducting lead. The expression for the den-
sity of states was derived from the semiclassical scattering
matrix formulation. It was shown to be equivalent to the
result derived previously from the Eilenberger equation for
the quasiparticle Greens function when the diagonal ap-
proximation is applied to traces of powers of the scattering
matrix. Applications to a square billiard as an example of
a classical integrable system and a square billiard with sur-
face roughness as an ergodic system were considered. For
the square billiard without roughness it was shown that

the deviation of the length distribution function of trajec-
tories hitting the superconducting part of the boundary
at small lengths is responsible for the saturation of the
average density of states at large energies. For the rough
billiard semiclassics predicts an exponential suppression of
the density of states at energies smaller than the Thouless
energy. The difference to the random matrix result of an
energy gap of order of the Thouless energy can be traced
back to the diagonal approximation employed in the semi-
classical theory. The semiclassical predictions are in good
agreement with quantum mechanical calculations for the
integrable as well as for the ergodic billiard. Finally we
derived expressions for the effect of a weak magnetic field
on the density of states in the rough billiard. A magnetic
field destroys the proximity effect on the density of states.
We interpreted this fact as a phase phenomenon involving
identical but reversed paths which hit the superconduct-
ing part of the billiard boundary.

We enjoyed discussions with A. Altland, C. Beenakker, K.
Frahm, B. Mehlig and H. Schomerus and thank M. Sieber for
a critical reading of the manuscript. WI would especially like
to thank F. Mota-Furtado and P.F. O’Mahony for encouraging
him to work on Andreev billiards and for discussions on the
subject in the early stage of this work.
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